INTRODUCTION GUIDE TO 3D RESISTIVITY IMAGING

1D SOUNDING: Z

SURFACE AND HOLE 3D RESISTIVITY IMAGING

SIMPLIFIED AND TRUE 3D RESISTIVITY IMAGING

SKETCH OF A 3D RESISTIVITY IMAGING SURVEY with one « SYSCAL Switch » and three « Switch units »

Roll along

SKETCH OF A 3D RESISTIVITY IMAGING SURVEY with a « SYSCAL Switch » and 72 electrodes

2D CONFIGURATION FOR A ONE LINE SURVEY, WITH 72 ELECTRODES

3D CONFIGURATION FOR A 6 LINE SURVEY, WITH 12 ELECTRODES / LINE

CREATION OF 3D SEQUENCES FOR 72 ELECTRODES with ELECTRE III software

INTRODUCE THE ELECTRODE COORDINATES WITH THE AUTOMATIC NUMBERING PROCEDURE

CREATION OF 3D SEQUENCES FOR 72 ELECTRODES

CHOOSE THE ELECTRODE ARRAY(S) FOR THE 3D RESISTIVITY IMAGING

3D = MANY ELECTRODES, HIGH RESOLUTION REQUIRED 3D = ACQUISITION TIME USUALLY < FIELD SET UP TIME (ELECTRODES & CABLES, ...)

USE SEVERAL SEQUENCES CORRESPONDING TO VARIOUS ELECTRODE ARRAYS, SO AS TO HELP THE INVERSION SOFTWARE, IN THE DELINEATION OF THE STRUCTURES

Type of array : Wenner-Schlumberger	rank (1 : best)	ank penetration depth lateral resolution		signal amplitude	field set up (# of far electrodes)	
cross-diagonal pole-pole dipole-dipole	1	Pole Pole (90%)	Dipole Dipole	Pole Pole	Wen Schlumb (0)	
dipole-dipole equatorial pole-dipole forward	2	Pole Dipole (35%)	Pole Dipole	Wen Schlumb	Dipole Dipole (0)	
pole-dipole re∨erse Wenner	3	Wen Schlumb (20%)	Wen Schlumb	Pole DIpole	Pole Dipole (1)	
Wenner-Schlumberger Schlumberger reciprocal	4	Dipole Dipole (20%)	Pole Pole	Dipole Dipole	Pole Pole (2)	

with the SYSCAL Pro SWITCH ELECTRE III optimizes the sequences for enabling the SYSCAL to <u>simultaneously</u> measure as many readings as possible, for reducing the acquisition time (for Wen and Wen Schlum, use the Schlum reciprocal) ONCE AN ELECTRODE ARRAY HAS BEEN SELECTED, THE PROGRAM AUTOMATICALLY GENERATES A SEQUENCE WHICH INCLUDES ALL THE POSSIBLE COMBINATIONS OF THIS ELECTRODE ARRAY, IN THE X AND Y DIRECTIONS

DEFINITION OF MOST USUAL ELECTRODE ARRAYS

note: the electrode(s) at infinity must be placed at a distance of about 5 to 10 times the maximum line length of the array (L)

Type of array :	rank	penetration depth	lateral	signal	field set up (# of far electrodes)	
Wenner-Schlumberger	(1 ; best)	(in % of line length)	resolution	amplitude		
complete pole-pole	((iii /o or iiio longiti)				
cross-diagonal pole-pole	1	Pole Pole (90%)	Dipole Dipole	Pole Pole	Wen Schlumb (0)	
dipole-dipole		. ,	· ·		,	
dipole-dipole equatorial pole-dipole forward	2	Pole Dipole (35%)	Pole Dipole	Wen Schlumb	Dipole Dipole (0)	
pole-dipole re∨erse Wenner	3	Wen Schlumb (20%)	Wen Schlumb	Pole DIpole	Pole Dipole (1)	
Wenner-Schlumberger Schlumberger reciprocal	4	Dipole Dipole (20%)	Pole Pole	Dipole Dipole	Pole Pole (2)	

а

CREATION OF 3D SEQUENCES FOR 72 ELECTRODES

CREATE THE SEQUENCE OF READINGS WITH THE AUTOMATIC GENERATION PROCEDURE

FIELD DATA ACQUISITION WITH SYSCAL Switch

FIELD SET UP:

- dig the electrodes and connect them to the cables; connect the SYSCAL Switch to the cables

- select the sequence to apply

- check the batteries

-check the electrode ground resistance

 control the quality of the future readings by fixing the "stack min", "stack max", and "quality factor" (standard deviation) parameters

- run the selected sequence

ACQUISITION TIME FOR A SEQUENCE OF 1000 READINGS	RESISTIVITY (5 stacks, 0.5s ON time)	RESISTIVITY & IP (15 stacks, 2s ON & OFF times)
SYSCAL R1 Plus Switch (1 channel measurement)	1 hour	12 hours
SYSCAL Pro Switch (10 channel measurement)	8 minutes	1 hour ½

SYSCAL R1 Plus Switch, 24, 48, 72 600V, 200W, 2.5A

SYSCAL Pro Switch, 48, 72, 96 800V, 250W, 2.5A

SWITCH Pro unit (48, 72, 96 extension)

PROCESSING 3D DATA WITH PROSYS II SOFTWARE

DATA TRANSFER TO PC

- Connect serial or USB link (SYSCAL to PC)
- Run PROSYS II software: communication, data download, SYSCAL type, & follow PC indications
- Give a name to the new global file data (.bin file)

File Communication Processing View Tools Help		
🙀 🕑 Data download 🔹 🕴 Elrec 6	\bigcirc	
Communication port Modem Port Syscal V9V11 / Elrec T	A R	
Syscal Kid switch Syscal Kid		
Syscal Pro / Elrec Pro		
Pro via modem		

MERGING FILES

When various data files successively acquired on the same site and have to be interpreted together, they have first to be merged with the PROSYS II software: **Open** "file 1", **Add** "file 2", **Add** "file 3", **Save as,** and give a name to the file which will include all the data ("file 123")

FILE 2

+

+

FILE 1

	Prosys II Software					
files	File Communication Proc					
the	 ☑ Open F2 ➢ Open last file F3 					
they	Jave as F4					
with are: 2"	Export and save Import file Import Electre file					
and	Add Split in files					
("file	Display options					
	× Quit					
FILE 3	3 → FILE 123					

MODIFY SPACING

If the spacing (like the line number Y of a profile) has to be changed, go to "file / processing / modify spacing" and key in the proper value (Y) for the A, B, M, N electrodes (spacings 5, 6, 7, 8) of all the readings of this file

Prosys II		
	Netwoor efficient	Function
Increment spacing	Values of Incr.	Increment
(X) Spacing 1	0	
(X) Spacing 2	0	Multiply
(X) Spacing 3	0	
(X) Spacing 4	0	
(Y) Spacing 5	50	Decemente (
(Y) Spacing 6	50	I* Recomputer
(Y) Spacing 7	50	
(Y) Spacing 8	50	
(Z) Spacing 9	0	
(Z) Spacing 10	0	🗙 Cancel
(Z) Spacing 11	0	
(Z) Spacing 12	0	? Help

Prosys II			
Filtering data			
Min value		Max value	
2.154	Vp	110.480	
4.532	In	545.570	
45.560	Rho	226.745	🗸 ок
0.000	Dev.	3	X Cance
0.000	М	0.000	
		,	💙 🖓 Help

EXPORT TO RES3Dinv

Once the «.bin» data file has been processed with PROSYS II, export them towards RES3dinv, and give a name to this new file («.dat» file)

FILTERING THE DATA

By using the "processing / filtering" function, it is possible to devalidate the noisy readings for which the standard deviation is greater than a given value (3% for example).

Prosys II Softwa	ire						
File Communication	Pro	cessing	View	То	ols	Help	
🛱 Open	F2	, s-					
🞾 Open last file	F3	у 🔛	Sp		Sp.,	. 🔛	Sp.
ave as	F4						
Export and save	×	Elec	Image	r			
Import file Import Electre file		Geosoft					
		Res2dinv / Res3dinv					
Autom							

INTERPRETING 3D DATA WITH RES3Dinv SOFTWARE

BASIC OPERATING PROCEDURE OF THE RES3Dinv SOFTWARE

RES3Dinv MAIN MENU							
CAR R	ES3DINV ver. 2	.15i - C:\l	Program	Files	\IRIS Instruments\Prosysll\		
File	Change Settings	Inversion	Display	Help	Quit		

CHANGE THE COLOUR SCALE

- click on "display / show inversion results", then on «display sections / display data and model sections"

- modify the **scale of the colours** (the resistivity limits for the 16 colours, or the colours themselves)

- store the new colour scale with the "file / store colour scale" function

HOW TO INVERT THE DATA ?

Introduce the data file (.dat) : "file / read data file", OK

Run the inversion: "inversion / least square inversion"

Display the results: "display / display results / display inversion model"

Select the type of display: "<u>sections</u>" (horizontal sections, at various depths) or "<u>slices</u>" (vertical slices, along various lines): see examples on the next two slides

EXPORT TO 3D VISUALIZATION PROGRAMS

Use the function "**file / export**" to make the RES3Dinv inversion result file compatible with the following 3D visualization software programs:

-Slicer Dicer

- Rockware

These programs visualize the inversion model in 3D, for a better understanding of the volumes of the various structures detected

see an example on third next slide

INTERPRETING 3D DATA WITH RES3Dinv SOFTWARE

REPRESENTATION OF THE RESULTS IN HORIZONTAL SECTIONS AT VARIOUS DEPTHS

INTERPRETING 3D DATA WITH RES3Dinv SOFTWARE

REPRESENTATION OF THE RESULTS IN VERTICAL SLICES, ALONG VARIOUS LINES

PLOTTING 3D VOLUMES WITH SLICER / DICER PROGRAM

REPRESENTATION OF THE INVERSION RESULTS IN VOLUMES

RESISTIVITY values, in ohm.m

5 PROFILES (P1 to P5) with 16 electrodes at 10m spacing, Wenner Schlumberger array

