SAMOVAR 6x7

USER'S GUIDE

written by Anatoly Legchenko

2021

Contents

Introduction
Installing SAMOVAR 6x74
1-D forward modeling workflow5
1-D inverse modeling (inversion) workflow5
SAMOVAR – HYDRUS convertor
Chapter 1. SAMOVAR 6x7: computing the linear filter
Setting Tx/Rx loop
Setting computing configuration9
Chapter 2. SAMOVAR 6x7: forward modeling 11
Chapter 3. SAMOVAR 6x7: inversion
Chapter 4. SAMOVAR – HYDRUS convertor
Chapter 5. Getting started
MRS forward modeling
MRS inversion
MRS and water flow modeling
Chapter 6. SAMOVAR 6x7: file formats 39
"name.nmc": parameters for computing the linear filter (the matrix)
"name.mrm": the linear filter (the matrix)
"name.mod": MRS forward modeling parameters
"name.eq": synthetic MRS signal
"name.inp": data summary file
"name.00", "name.01", "name.02",, "name.0N": raw-data time series
"name.f0", "name.f1", "name.f2",, "name.fN"": filtered time series
"name.nvi": inversion summary file
"name.nov": inversion results
"name.nbl": the black list
"name.nid": records for inversion
"name_TF.txt": parameters for the Tikhonov regularization
Index

Introduction

Magnetic Resonance Sounding (MRS) is distinguished from other geophysical tools used for groundwater investigation because of measurements of the magnetic resonance signal generated by groundwater molecules. A pulse of alternating current energizes a wire loop set up on the ground surface and the MRS signal allows detecting groundwater with a high degree of reliability. Measurements with varied pulse magnitudes then reveal the depth and thickness of water-saturated layers. The hydraulic conductivity of aquifers can also be estimated using boreholes for calibration. MRS can be used for both predicting the yield of water supply wells, and for interpolation between boreholes, thereby reducing the number of holes required for hydrogeological modeling.

SAMOVAR is a software for the MRS 1-D forward modeling and inversion (inverse modeling). SAMOVAR is fully compatible with data issued from NUMIS, NUMIS^{PLUS}, NUMIS^{POLY}, NUMIS^{AUTO} and NUMIS^{LITE} instruments fabricated by IRIS Instruments.

The following programs compose the SAMOVAR 6x7 software package:

- SAMOVAR 6x7: computing MRS linear filter (file: Samovar_6x7_comput.exe).
- SAMOVAR 6x7 modeling 1-D forward modeling of MRS signals (Samovar_6x7_mod.exe).
- SAMOVAR 6x7 inversion data processing and 1-D inversion of MRS data (Samovar_6x7_inv.exe).
- SAMOVAR HYDRUS convertor inter-software data convertor (Samovar_12x1a_HYDRUS_conv.exe).

System requirements

SAMOVAR 6x7 has been developed for Windows 32-bit environment. It works with the Windows NT, XP and later versions, including Windows 10.

All the functionalities are guaranteed for the following PC configuration (the *minimum requirements*):

- Windows NT, XP and later
- Pentium III microprocessor (800 MHz) and better
- 128 Mb RAM memory and more
- 1024 x 768 screen resolution and better

Installing SAMOVAR 6x7

For installing Samovar 6x7 you need to unzip the compressed file "Samovar_6x7.zip" and copy all the files to a folder in which you may to read and write. For example: "C:\D\work\tst-book\Samovar_6x7".

1-D forward modeling workflow

The forward modeling procedure allows computing MRS signals corresponding to the prescribed measuring conditions with a vertical profile of the water content. The measuring conditions comprise: the electrical resistivity of the subsurface; the magnitude and the inclination of the geomagnetic field; the MRS measuring setup. The MRS signals are computed in two steps: 1) the linear filter contains the parameters of the subsurface and of the measuring setup; 2) the water content and the relaxation times are added to the subsurface described by the linear filter. The output of the MRS forward modeling is a data set simulating experimental data measured with the NUMIS MRS instrument.

1-D inverse modeling (inversion) workflow

The inverse modeling (inversion) procedure allows computing the water content and the relaxation time vertical profiles, considering the prescribed measuring conditions and corresponding to measured or simulated MRS signals. The measuring conditions comprise: the electrical resistivity of the subsurface; the magnitude and the inclination of the geomagnetic field; the MRS measuring setup. The MRS inversion routine allows fitting measured signals by synthetic signals computed using an inverse model. The output of the MRS inverse modeling is the inverse model that fits experimental data and composed of the vertical profiles of the water content and the relaxation times.

1-D inverse modeling (inversion)

SAMOVAR - HYDRUS convertor

The SAMOVAR – HYDRUS data convertor allows two principal tasks.

 The MRS forward modeling can be carried out using the water content in the subsurface provided by a water flow modeling with the HYDRUS-1D software. The output of the MRS forward modeling is a data set simulating experimental data measured with the NUMIS MRS instrument.

2) The water content in the subsurface provided by MRS inversion can be compared with that provided by a water flow modeling carried out with the HYDRUS-1D software. The discrepancy between these two data sets may allow revising the water flow model and/or the MRS inverse model. The joint inversion of the SAMOVAR and HYDRUS-1D data is not included in the SAMOVAR 6x7 software package.

SAMOVAR – HYDRUS data convertor 2) SAMOVAR ->HYDRUS

Chapter 1. SAMOVAR 6x7: computing the linear filter

Setting Tx/Rx loop

The first step comprises selecting the measuring loop.

Loop types supported by SAMOVAR 6x7:

Setting the loop geometry.

The loop geometry can be visualized (*Draw*) saved as an image (*Save*) or printed out (*Print*). *OK* button confirms the loop.

Setting computing configuration

The configuration window comprises four major sections.

Parameters for computing menu allow setting the information about the geomagnetic field (GMF): the Larmor frequency f_0 is proportional to the magnitude of the GMF B_0 ($\omega_0 = 2\pi f_0 = \gamma_p B_0$); the GMF inclination, including the hemisphere of a measuring site; the max depth of the linear filter computing (the recommended value is equal to 1.5 of the loop size); the max value of the pulse moment (the recommended value is 16000 A-ms) and pulse duration (the recommended value is 40 ms); by selecting the elliptical polarization one will use it instead of the linear one (select); the frequency shift between the measured signal frequency and the pulse frequency (both values are provided by the measuring device).

Loop position graph shows the loop geometry (*Set loops*).

Geoelectrical cross-section table allows setting the number and geometry of the electrically conductive layers in the subsurface.

Parameters menu allows saving and loading computing configurations for the multiple use. *File* section starts computing of the linear filter (Run).

Frequency shift table contains the frequency of measured signal versus pulse moment. The right-hand graph shows the signal frequency variation (black line) and the pulse frequency (red line) plotted versus pulse moment. The graph can be scaled using the mouse buttons.

Computing running window shows computing progress, which can be canceled (*Break*) before finishing. The *Run list* menu is not activated for the SAMOVAR 6x7 version.

🐮 Computing r	unning –	· 🗆	×
EM field Integration Model: 0/0	Computing info	Brea	
	<u>Run list</u>		
n riie			

Computing results are stored in a file "*name.mrm*" (160 kB) and the computing configuration in a file "*name.nmc*" (1 kB). It is recommended to check the file sizes before using the linear filter. Incorrect computing may cause problems for the forward modeling and inversion.

Chapter 2. SAMOVAR 6x7: forward modeling

MRS forward modeling for NUMIS system			-	
Sounding configuration	Matrix	Comments:	Write down your comment	s, please
Sounding configuration NQ Q max Add Noise Data 16 10000 Add Noise N P1 FID1 D1 P2 FID2 D2 SE 240 40 240 20 40 240 0 0 Data c:\ Load Matrix c:\ Load Water-saturated layers Layer Top Bot w(%) T2* DF T1 0 0.0 0.0 0.0 0.0 0.0	Matrix Data Info Make model Load Make RMS(nV) 1. 2. + Edit layers Add Datata	Comments:	Write down your comment q (A-ms) • Data Model	s, please
	Clear	AutoZ	Coom Save Print	Quit

Sounding configuration menu allows setting:

- The number of pulses and the max value of the pulse moment.
- The measuring sequence in ms (N noise record, P1 the first pulse, FID1 the signal record, D1 the first delay, P2 the second pulse, FID2 the signal record, D2 the second delay, SE the signal record).
- These parameters can be set equal to the data set parameters (*Load*). The data set file "*name.nov*" is generated by the inversion routine. Raw data cannot be loaded.
- A random noise can be added to the synthetic time series (*Add Noise*):

Add Noise	- 🗆 X
□ Random Noise □ nV	Notch filter 50 Hz 6 50 Hz 6 60 Hz
🔲 Manual signal	
E (n¥) T2*(ms) 0 0	Ph (*) DF (Hz)
OK	Cancel

For testing the data processing, the synthetic records can be filtered with a notch filter and a manual signal with known parameters can be used.

Geoelectrical model is provided by the linear filter also notated as "the matrix" (Load).

Water-saturated-layers table allows setting the top and the bottom of water-saturated layer with the water content (in %), the relaxation time and the frequency shift for each layer. The table can be edited using "*Edit layers*" buttons. For computing MRS response corresponding to the table, just double-click selectin one of the table cells. Each signal parameter can be increased

or decreased by using "+" or "-" buttons of the RMS(nV) section. The root-mean-square error between the synthetic and the measured signals will be automatically computed if a data set is loaded. This option allows fitting the experimental signal by the synthetic one.

Info button allows a verification of the linear filter (matrix):

🚺 Matrix C:\D\work\tst-book\data-book\matrix\sq80-example.mrm	×
This matrix has been calculated using following model :	
antenna: square, side = 80,0 m	
geomagnetic field: inclination = -55 degr.; Larmor frequency = 2000,0 Hz	
geoelectrical section: depth from 0,0 to 20,0 m; resistivity 10,0 ohm-m depth from 20,0 to 40,0 m; resistivity 80,0 ohm-m depth from 40,0 to 300,0 m; resistivity 300,0 ohm-m	
max. depth = 120,0 m; Qmax = 16000,0 A-ms	
1	
ОК	

As well as the data summary provided by the inversion routine:

Data Set C:\D\work\tst-book\data-book\models\model-1\model	×
Model: Write down your comments, please Loop: 2 - 80.0 x N Date: 18.06.2021; Time: 17:10	^
NUMIS data set: C:\D\work\tst-book\data-book\models\model-1\model-demo-1.in matrix: C:\D\work\tst-book\data-book\matrix\sq80-example.mrm loop: square, side = 80.0 m geomagnetic field: inclination=-55 degr, magnitude= 46948.36 nT	
filtering window = 200.0 ms bandpass = 10.00 Hz permeability constant Cp = 7.00e-09	
average S/N = 12901.92; EN/IN = 0.00 mean_noise = 0.00 nV fitting error RMSE FID1 = 1.71 nV RMSE FID2 = 2.48 nV	
RMSE T1 = 2.88 ms param. of regular. (PR) PR w = 16.0 PR T1 = 121 117	~
OK	

Make model menu allows either to compute the set of synthetic data or to load previously saved model.

Graphical menu in the right-hand side of the processing window allows visualizing synthetic and experimental signals. The graph can be scaled using the mouse buttons as well as *Auto* and *Zoom* buttons, saved (*Save*) and printed out (*Print*).

Comments window allows adding a short description of the model to the set of generated synthetic data.

Chapter 3. SAMOVAR 6x7: inversion

Main window contains the menu bar and the text box. The focus can be set to this window by using the shortcut F3. The text box summarizes the data processing and inversion results. The menu bar running inversion and configuring the inversion workspace.

Inversion	-		\times
File Run Configuration Graphics Windows			
Model: It is a demo model Loop: 2 - 80.0 x N Date: 18.06.2021; Time: 17:47			
NUMIS data set: C:\D\work\tst-book\data-book\model-1\mo matrix: C:\D\work\tst-book\data-book\matrix\sq80-example.mrm loop: square, side = 80.0 m geomagnetic field: inclination=-55 degr, magnitude= 46948.36 nT filtering window = 200.0 ms	del·demo-1	inp	
bandpass = 10.00 Hz permeability constant Cp = 7.00e-09			
average S/N = 12901.11; EN/IN = 0.00 mean_noise = 0.00 nV fitting error BMSE FID1 = 1.71 nV			
RMSE FID2 = 2.48 nV RMSE TI = 2.88 ms param. of regular. (PR) PR w = 16.0			
PR T1 = 121.117 number of layers = 16 number of pulse moments = 16			

File menu with the shortcuts allows loading recorded time series (signals) or results of the previous inversion, printing out or saving graphical representation of the inversion results and closing graphs. The F10 shortcut can be used for exit the inversion program.

File Run Configuration Graphics Windows Ioad NUMIS data > inversion results signals print selected GRAPH Ctrl+ Alt+P signals print options Ctrl+O ctrl+ optimer setup save image of selected GRAPH Ctrl+Alt+S save image of all GRAPHs Ctrl+S	Ctrl+N Ctrl+Alt+N
Ioad NUMIS data inversion results print selected GRAPH Ctrl+ Alt+ P print all GRAPHs Ctrl+ P print options Ctrl+ O print setup Ctrl+ Alt+ S save image of selected GRAPH Ctrl+ Alt+ S save image of all GRAPHs Ctrl+ S	Ctrl+N Ctrl+Alt+N
print selected GRAPH Ctrl+ Alt+ P signals print all GRAPHs Ctrl+ P print options Ctrl+ O printer setup Save image of selected GRAPH save image of all GRAPHs Ctrl+ S	Ctrl+Alt+N
print all GRAPHs Ctrl+P print options Ctrl+O printer setup save image of selected GRAPH Ctrl+Alt+S save image of all GRAPHs Ctrl+S	
print options Ctrl+ O printer setup save image of selected GRAPH Ctrl+Alt+ S save image of all GRAPHs Ctrl+S	
save image of selected GRAPH Ctrl+Alt+S save image of all GRAPHs Ctrl+S	
save image of all GRAPHs Ctrl+S	
close GRAPH	
close all GRAPHs	
Exit F10	

Run menu allows starting inversion. SAMOVAR 6x7 program supports the amplitude inversion. Inversion of complex signals is not included in this version.

Configuration menu allows saving and loading different configurations of the graphical windows in the workspace. Each configuration is automatically saved as the current configuration. Different configurations can be saved or loaded as specific models. The workspace can be configured by loading the current configuration, one of the previously saved models, or using the default configuration.

Graphics menu allows appointing graphs to the selected by the mouse graphical window in the *List* mode or selecting graphs for using in the *Roll* mode.

Windows menu allows opening a new graphical window and setting focus on the main window (see *main window*) or the control bar window (see *control bar*). The graphical windows can be

shown as the *cascade* or side-by-side (*arrange*). The focus can be set on any active graphical window.

Control bar window allows individually scaling graphs in the graphical windows. The shortcut to this window is F4. *Graph* option sets the *List* or the *Roll* mode for the selected graphical window. In the *Roll* mode, the pre-selected graphs can be shown in a sequence by using << or >> buttons. For pre-selecting graphs in the *Roll* mode, one needs to set focus on one graphical window and to select with the mouse left button graphs exposed in the *Graphics menu* of the *Main window*.

Control menu allows scaling the graph in a focused graphical window. One can *Zoom* axes, set an automatic scaling (*data*) or set a user-defined scaling (*user*). In the focused graphical window, the graph can be shifted along the X and Y axes (*shift*). The current scale can be temporally saved and loaded using the *Memory* options (**m+** and **m-**). Note that the scale saved in the memory is not valid after exiting the program. For saving scaling on the hard disk use the *Configuration menu*.

Configuration of graphical windows in the workspace depends on the computer screen and the graphs the user wants to see when working with the inversion routine. Graphical windows can

be opened and closed using the *Windows menu* of the *Main window*. Each graphical window can be individually sized and set on the screen. Size and location of the graphical windows can be saved using the *Configuration menu*. The examples below show two different configurations.

Inversion configuration window allows guiding the data processing and inversion procedures.

Data	Set	
NUMIS matrix ook\data-book\matrix\sq80-example.mm NUMIS data C:\D\work\tst-book\data-book\models\n	Browse Browse	 Matrix Data Blacklist View
Signal pro	cessing	
C RC filter (ms) Processing window (ms) ✓ 10 ✓ 15 ✓ 200 ✓	© 50 H	z C 60 Hz le C Narrow band 3,0
Inversion para	meters	
Regularization Layers Image: auto w Image: auto Image: auto T1		Cp auto

NUMIS matrix (*name.mrm* file) and *NUMIS data* (*name.inp* file) have to be loaded using corresponding *Browse* buttons. Description of the *Matrix* (linear filter) or the *Data* set can be exposed for verification using the *View* button in the corresponding windows.

Matrix X	🕱 Data Set 🛛 🕹
This matrix has been calculated using following model : antenna: square, side = 80,0 m geomagnetic field: inclination = -55 degr.; Larmor frequency = 2000,0 Hz geoelectrical section: depth from 20,0 to 20,0 m; resistivity 10,0 ohm-m depth from 20,0 to 40,0 m; resistivity 90,0 ohm-m depth from 40,0 to 300,0 m; resistivity 300,0 ohm-m max. depth = 120,0 m; Qmax = 16000,0 A-ms	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
OK	ОК

When working with real data, it may be necessary to exclude some measurements corrupted by noise or because of possible technical problem. For that, the corrupted record can be put to the *Blacklist*. One can open the *Blacklist of measurements* window using the *Edit* button.

For blacklisting a record corresponding to one pulse moment, one has to double-click on the corresponding line in the *Blacklist of measurements* window. For example, the record in the line 6 corresponding to the pulse moment 350.88 A-ms shown in figure above is put in the blacklist and will not be considered by the inversion routine. For deleting the record from the blacklist, double-click this line again.

Signal processing menu allows selection the *Bandpass* or *RC filter* with the corresponding bandwidth. MRS signal is processed considering the record length (*Processing window*) limited by the length of the field record. The *Notch filter* can be activated for *50 Hz* or *60 Hz* industrial frequency with the *Wide* or *Narrow* bandwidth.

Inversion parameters menu allows selecting the regularization parameter in the Tikhonov regularization inversion for water content (w) or for relaxation time (T_I). The number of layers in the inverse model can be set automatically or manually (*Layers number*). For computing the hydraulic conductivity (permeability), the empirical constant C_p may be set automatically or manually.

Run inversion and analyze inversion results

The inversion results are saved in the "*name.nov*" file. The summary of the inversion results is saved in the information file ("*name.nvi*"). A series of "*name.f01*", "*name.f02*", …, "*name.f016*" files contain filtered MRS records. Their number corresponds on the number of pulses.

For loading inversion results one can use the *Main window* menu. Note that if the graphical windows contain the graphs with the inversion results and with the MRS records then one needs to load the *inversion results* and then the *signals*.

3	NUMIS 1D inversion	145 - 1-	- 0	×
File	Run Configuration Graphics	windows	inversion secults	CtrluN
	IOAD INDIVIIS DATA	1	inversion results	Ctri+N
	print selected GRAPH	Ctrl+Alt+P	signals	Ctrl+Alt+N
	print all GRAPHs	Ctrl+P		
	print options	Ctrl+O		Con
	printer setup			
	save image of selected GRAPH	Ctrl+Alt+S		X+
	save image of all GRAPHs	Ctrl+S		<u>y+</u>
	close GRAPH			dat
	close all GRAPHs			use
	Exit	F10	1	<u>Shi</u>

NUMIS 1D inversion window contains the summary of the inversion parameters: signal processing parameter, estimate of the noise magnitude, average signal to noise ratio (S/N) and the external noise to the internal noise ratio (EN/IN), fitting error for the FID1 and FID2 signals, regularization parameter for w and T_1 inversions, the number of pulse moment and the number of layers in the inverse model.

👸 NUN	IS 1D inversion			_	\times
File Ru	Configuration	Graphics	Windows		
Model: It is Loop: 2 -	a demo model 0.0 x N Date: 18.06	.2021; Time	: 17:47		
NUMIS da matrix: C:\ loop: squa geomagne inclination:	a set: C:\D\work\tst- I\work\tst-book\data e, side = 80.0 m ic field: -55 degr, magnitude=	book\data-bo book\matrix 46948.36 nT	ook\models\model-1\model \sq80-example.mrm 1	l-demo-1.inp	
filtering wir bandpass permeabili	dow = 200.0 ms +10.00 Hz + constant Cp = 7.00	e-09			
average S mean_nois fitting error RMSE F RMSE T param. of t PR w = PR T1 = number of	N = 12432.28; EN/I ⇒ = 0.00 nV D1 = 1.25 nV D2 = 1.96 nV = 4.42 ms] egular. (PR) 10.4 80.109 ayers = 15 pulse moments = 15	N = 0.00			

Chapter 4. SAMOVAR – HYDRUS convertor

Main window shows the options to use for guiding the data exchange between SAMOVAR 6x7 and HYDRUS-1D programs.

Import data menu allows loading HYDRUS-1D or SAMOVAR 6x7 data sets. A short summary of the HYDRUS-1D data set contains information about the number of *Observation depths*, the number of *Print times* and the number of *Data points* in HYDRUS-1D model. The number of data points is a product of the observation depth number and print times number. One should precise the SAMOVAR version to use (*Samovar 6.6* data format is compatible with SAMOVAR 6x7 format or *Samovar 12.x*, which is not compatible).

Compute volume menu allows selecting the depth interval to compute the equivalent water column used for estimating the water volume in the subsurface considering the water content provided by the MRS inverse model (SAMOVAR) and the water flow forward model (HYDRUS). For example, $z_{top}=2$ and $z_{bot}=12$ means that the water column will be computed in the layer between 2 and 12 m. The graphical window below visualizes the water columns. This graph is sizeable by using the mouse buttons. The double click makes an automatic scaling.

Graphs menu allows configuring graphs that visualize SAMOVAR and HYDRUS water contents. If the configuration is changed, then the graphs have to be actualized by using the *Draw* button. The water content versus time corresponding to the depth of the observation points in HYDRUS modeling are plotted in graphical windows. Each window contains three graphs: *HYDRUS forward*, *HYDRUS for inversion* and *Observations*. HYDRUS forward shows the water content given by the model, HYDRUS for inversion shows the water content corresponding to observations at the observation point that can be used for the inversion using the HYDRUS inverse modeling routine and Observations show SAMOVAR provided water

content at the depth corresponding to the observation points. The number of these windows is equal to the number of the observation points. The graphical windows can be exposed *Side-by-side* or in *Cascade*.

If the *3-D editor* is activated, then the HYDRUS and SAMOVAR water contents and the difference in-between are shown in three corresponding windows. If *Position auto* is deactivated, then the size and the position of each graph are defined manually.

3-D editor window allows setting the time step for plotting the water content graphs. For accelerating the water content visualization, it is recommended to use larger time steps. It could be particularly useful when working with a slow computer.

🚺 3-D ed — 🗆 🗙
Manual scale Time step: 0,00
Time Depth θ Min: 0,00 0,00 0,00 Max: 0,00 0,00 0,00
 ↔ HYDR. ○ Sam. ○ Diff. ↔ 0,00 0,50 1,00 Set
RMSE(3D) 0,000000 RMSE(V) 0,000

When selecting one window (*HYDRUS*, *Samovar* or *Difference*), the color scale corresponds to the selected graph. For setting a manual scale in the selected graph, set the *Min* and *Max* values and push the *Set* button. For the automatic scaling, double-click on the selected graph. *RMSE(3D)* and *RMSE(V)* show respectively the root-mean-square error (difference) computed considering the water content profiles and the water volume (water column) versus time graph plotted in the *Main window*.

Export data menu allow data exchange between SAMOVAR and HYDRUS.

🕷 Samovar-HYDRUS-co	– 🗆 ×
Import data	Export data
HYDRUS Load	HYD->HYD Save
Obs.depths 10	• Sam O HYD
Print times 11	Sam->HYD Save
Data points 110	HYD->Sam Save

HYDRUS-HYDRUS option allows recording the water content provided by HYDRUS forward modeling and corresponding to the HYDRUS observation points to HYDRUS (*Save*). These data can be used as input data in the inverse modeling with the HYDRUS inversion routine. If **HYD** option is set, then data are transferred without modification. This option can be useful for testing HYDRUS inverse modeling. If *Sam* option is set, then data simulate MRS measurements of the water content computed based on the HYDRUS water content. Correction comprises a delay between HYDRUS provided water content and that shown by MRS. This option allows testing HYDRUS inversion using MRS data at the observation points.

Correction of the MRS water content for a direct comparison with the HYDRUS provided water content is necessary because of different scales and different resolution for HYDRUS and MRS results. The water flow model computed with HYDRUS shows an instant water content at the local scale. With local measurements one observes progressing infiltration front and MRS shows the volume of accumulated water.

Measurements of the water volume instead of the instant value of the water content may cause a delay between the infiltration front and the volume observed with MRS and the local errors, as shown in the figure below (left-hand graph). In this example, the red line shows the true water content and the black line shows the MRS estimated water content.

However, local errors can be neglected at larger scale and MRS provides a reasonable approximation of the water content (right-hand graph).

Samovar->HYDRUS option allows transferring MRS measured water content to HYDRUS (Save). The MRS water content is used as the initial water content for the water flow modeling. HYDRUS->Samovar option performs the MRS forward modeling using the water content given by HYDRUS (Save). For that, the linear filter (matrix) has to be computed using SAMOVAR computing program and loaded.

🐉 Ouvrir		·····				×
Regarder dans :	matrix		•	⇐ 🗈 💣 🎟 ◄		
Accès rapide Bureau Bibliothèques Ce PC	Nom	e.mrm		Modifié le 18/06/2021 16:03		Type Fichie
Réseau	< Nom du fichier : Types de fichiers :	sq80-example.mm Samovar matrix (*.mm)		•	Ouv Annu	> rir ler

A random noise can be added to MRS records. A set of synthetic MRS data simulating field measurements will be automatically created.

Add Noise	Ce PC > OS (C:) > D > work > tst-book > data-boo	ok > MRS-models > Model-for-HYDRUS
Vn 0.0	^ Nom ^	Modifié le Type
	model-for-HYDRUS	22/06/2021 17:43 Doss
	model-for-HYDRUS.shm	22/06/2021 17:43 Fichie

MRS dada set is composed of the "*name.shm*" file and the record files containing MRS records corresponding to each sounding.

			tst-book > data-book > MRS-models	> Model-for-HYDRUS > model-	for-HYDRUS > Time
			Nom	Modifié le	Туре
			MRS_Mod_Time_1.01	22/06/2021 17:43	Fichier 01
			MRS_Mod_Time_1.02	22/06/2021 17:43	Fichier 02
under State Incole States Incole State		> and the UVDBUC	MRS_Mod_Time_1.03	22/06/2021 17:43	Fichier 03
work / tst-book / data-book / M	RS-models > Model-for-HYDRUS	model-tor-HYDRUS	MRS_Mod_Time_1.04	22/06/2021 17:43	Fichier 04
Nom	Modifié le	Type	MRS_Mod_Time_1.05	22/06/2021 17:43	Fichier 05
Nom	mounte le	type	MRS_Mod_Time_1.06	22/06/2021 17:43	Fichier 06
All_nov	22/06/2021 17:43	Dossier de fichiers	MRS_Mod_Time_1.07	22/06/2021 17:43	Fichier 07
Time_1	22/06/2021 17:43	Dossier de fichiers	MRS_Mod_Time_1.08	22/06/2021 17:43	Fichier 08
Time 2	22/06/2021 17:43	Dossier de fichiers	MRS_Mod_Time_1.09	22/06/2021 17:43	Fichier 09
Time 3	22/06/2021 17:43	Dossier de fichiers	MRS_Mod_Time_1.010	22/06/2021 17:43	Fichier 010
Time 4	22/06/2021 17:42	Dossier de fichiers	MRS_Mod_Time_1.011	22/06/2021 17:43	Fichier 011
Time F	22/00/2021 17:43	Dossier de fichiers	MRS_Mod_Time_1.012	22/06/2021 17:43	Fichier 012
IIme_5	22/06/2021 17:43	Dossier de fichiers	MRS_Mod_Time_1.013	22/06/2021 17:43	Fichier 013
Time_6	22/06/2021 17:43	Dossier de fichiers	MRS_Mod_Time_1.014	22/06/2021 17:43	Fichier 014
📕 Time_7	22/06/2021 17:43	Dossier de fichiers	MRS_Mod_Time_1.015	22/06/2021 17:43	Fichier 015
📕 Time_8	22/06/2021 17:43	Dossier de fichiers	MRS_Mod_Time_1.016	22/06/2021 17:43	Fichier 016
Time_9	22/06/2021 17:43	Dossier de fichiers	MRS_Mod_Time_1.017	22/06/2021 17:43	Fichier 017
Time 10	22/06/2021 17:43	Dossier de fichiers	MRS_Mod_Time_1.018	22/06/2021 17:43	Fichier 018
Time 11	22/06/2021 17:42	Dossier de fichiers	MRS_Mod_Time_1.019	22/06/2021 17:43	Fichier 019
in time_ti	22/00/2021 17:43	Dossier de lichiers	MRS_Mod_Time_1.020	22/06/2021 17:43	Fichier 020

The summary file "*name.shm*" contains a summary of MRS data file names and the measuring time corresponding to each sounding.

// mc	model-for-HYDRUS.shm - Bloc-notes			
Fichier	r Edition Format Affichage Aide			
N	Time (days) Samovar files: 11			
1	0.000000 MRS_Mod_Time_1.mod			
2	800.000000 MRS_Mod_Time_2.mod			
3	1600.000000 MRS_Mod_Time_3.mod			
4	2400.000000 MRS_Mod_Time_4.mod			
5	3200.000000 MRS_Mod_Time_5.mod			
6	4000.000000 MRS_Mod_Time_6.mod			
7	4800.000000 MRS_Mod_Time_7.mod			
8	5600.000000 MRS_Mod_Time_8.mod			
9	6400.000000 MRS_Mod_Time_9.mod			
10	7200.000000 MRS_Mod_Time_10.mod	ł		
11	8000.000000 MRS_Mod_Time_11.mod	ł		

SAMOVAR inversion program allows computing the inverse models (*Time_1, Time_2* etc) to use for the water flow modeling with HYDRUS.

MRS field data also can be used with the *SAMOVAR – HYDRUS convertor*. For that, a field data set has to be manually prepared in the same format as the synthetic data set. Information about the measuring time corresponds to the time of the "*name.inp*".

V130102A.INP	05/01/2000 15:42	Fichier INP
V130102A pbl	17/02/2018 16:57	Fichier NRI

For example, the data set contains 34 soundings. Using a text editor, create a file "*name.shm*" (take care to respect the blank positions):

MRS	Villamblain -	Bloc-notes
Fichier	Edition For	mat Affichage ?
MRS. Fichier N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21 21 22 23 4 2 2 2 2 2 2 2 2 2 2 2 2 2	Villamblain - Edition For Time (0 0.1 1 1.5.1 15.2 25.2 25.3 42.3 57.4 73.4 73.5 84.5 84.6 109.6 109.7 126.7 141.7 141.8	Bloc-notes mat Affichage ? days) Samovar files: 34 V260492A.inp V270492B.inp V270492B.inp V10592A.inp V110592A.inp V210592A.inp V210592A.inp V210592A.inp V20692A.inp V220692A.inp V220692A.inp V080792A.inp V190792B.inp V190792B.inp V130892A.inp V130892A.inp V130892A.inp V130892A.inp V140992A.inp V140992A.inp V140992A.inp V14092A.inp V14092A.inp V14092A.inp V14092A.inp V14092A.inp V14092A.inp V14092A.inp V14092A.inp V14092A.inp
19 20 21 22 23 24 25 26 27 28 29	141.7 141.8 168.8 168.9 183.9 196.9 197 197.1 207.1 207.2 263.2	V140992A.inp V140992B.inp V111092A.inp V261092B.inp V081192A.inp V081192B.inp V081192C.inp V181192A.inp V181192A.inp V181192A.inp V130102A.inp
30 31 32 33 34	263.3 277.3 277.4 310.4 325.4	V130102B.inp V270122A.inp V270122B.inp V29022A.inp V230322A.inp

		> D > work > tst-book > data-b	ook > MRS-field-data > MRS_monitoring
		All_nov	Samovar_to_Surfer
		📕 Time_1	📜 Time_2
		📕 Time_3	📜 Time_4
		📜 Time_5	📜 Time_6
		📕 Time_7	📕 Time_8
		📜 Time_9	📕 Time_10
		📕 Time_11	Time_12
		📕 Time_13	📕 Time_14
		📕 Time_15	📕 Time_16
		📕 Time_17	📕 Time_18
		📕 Time_19	Time_20
> D > work > tst-book > data-book > MRS	5-field-data	📕 Time_21	Time_22
		Time_23	Time_24
Nom	Modifié le	Time_25	Time_26
Nom	Mountene	📕 Time_27	Time_28
MRS monitoring	08/02/2019 15:36	Time_29	Time_30
	00,02,2010 10.00	Time_31	Time_32
MRS_monitoring.shm	21/04/2018 16:43	📕 Time_33	📕 Time_34

Make MRS 1-D inversion of all the soundings. Create 34 folders named from "*Time_1*" to *Time_34*".

Copy all the files corresponding to one sounding in one folders "*Time_N*". Example below shows the data sets in the folders "*Time_1*" and "*Time_2*".

> D > work > tst-book > data-book	x > MRS-field-data > MRS_monitoring > Time_1	> D > work > tst-book > da	ata-book > MRS-field-data > MRS_monitoring > Time_2
V260492A.1	V260492A.2	W 260492B.1	V260492B.2
U260492A.3	V260492A.4	V260492B.3	V260492B.4
V260492A.5	V260492A.6	V260492B.5	V260492B.6
V260492A.7	V260492A.8	V260492B.7	V260492B.8
V260492A.9	V260492A.10	V260492B.9	V260492B.10
V260492A.11	V260492A.12	V260492B.11	V260492B.12
V260492A.13	V260492A.14	V260492B.13	V260492B.14
V260492A.15	V260492A.16	V260492B.15	V260492B.16
V260492A.f1	V260492A.f2	V260492B.f1	V260492B.f2
V260492A.f3	V260492A.f4	V260492B.f3	V260492B.f4
V260492A.f5	V260492A.f6	V260492B.f5	V260492B.f6
🗋 V260492A.f7	V260492A.f8	V260492B.f7	V260492B.f8
V260492A.f9	V260492A.f10	V260492B.f9	V260492B.f10
V260492A.f11	V260492A.f12	V260492B.f11	V260492B.f12
V260492A.f13	V260492A.f14	V260492B.f13	V260492B.f14
V260492A.f15	V260492A.f16	V260492B.f15	V260492B.f16
V260492A.INP	V260492A.nbl	V260492B.INP	V260492B.nbl
V260492A.nid	V260492A.nir	V260492B.nid	V260492B.nir
V260492A.nov	V260492A.ns1	V260492B.nov	V260492B.ns1
V260492A.nvi	V260492A.srd	V260492B.nvi	V260492B.srd
V260492A.srm	V260492A.sv0	V260492B.srm	U260492B.sv0

Note that folders "*All_nov*" and "*Samovar_to_Surfer*" will be created and filled up automatically by *SAMOVAR – HYDRUS convertor*.

When modeling a water flow with HYDRUS-1D using MRS data, the final time in the hydraulic model should be set equal to the last day of the MRS monitoring and the number of print times should be set N-1 where N is the number of MRS soundings. The first sounding is used for setting the initial water content.

Chapter 5. Getting started

MRS forward modeling

Let us assume the following modeling conditions:

- A 80 m-side square MRS loop (the max depth of 120 m).
- FID sounding with two 40-ms pulses with the max pulse moment of 12000 A-ms.
- The geomagnetic field inclination 55°N, magnitude 46948 nT (the Larmor frequency of 2000 Hz).
- The geoelectrical cross-section and parameters of the water saturated layer are given below:

We compute the linear filter corresponding to the geology and the geographical position of the investigated area with *SAMOVAR computing* program

The linear filter is stored in two files

> D > work > tst-book > data-book > matrix				
Nom	Modifié le	Туре	Taille	
sq80-example.mrm	18/06/2021 16:03	Fichier MRM	160 Ko	
sq80-example.nmc	18/06/2021 16:03	Fichier NMC	1 Ko	

The linear filter represents measuring conditions. For computing MRS signals we use the *SAMOVAR forward modeling* program.

We load the linear filter (matrix), one water saturated layer corresponding to our model and compute the MRS signal by double clicking on the water saturated layer. Then, we create the data set simulating field measurements (*Make*) and add 50 nV of the ambient noise.

The data set composed of 19 files (for this model) is saved in the selected folder.

) > D > work > tst-book >	data-book > MRS-models	> model-1	
Nom	Date	Туре	Taille
model-demo-1.01	18/06/2021 17:10	Fichier 01	14 Ko
model-demo-1.02	18/06/2021 17:10	Fichier 02	14 Ko
model-demo-1.03	18/06/2021 17:10	Fichier 03	14 Ko
model-demo-1.04	18/06/2021 17:10	Fichier 04	14 Ko
model-demo-1.05	18/06/2021 17:10	Fichier 05	14 Ko
model-demo-1.06	18/06/2021 17:10	Fichier 06	14 Ko
model-demo-1.07	18/06/2021 17:10	Fichier 07	14 Ko
model-demo-1.08	18/06/2021 17:10	Fichier 08	14 Ko
model-demo-1.09	18/06/2021 17:10	Fichier 09	14 Ko
model-demo-1.010	18/06/2021 17:10	Fichier 010	14 Ko
model-demo-1.011	18/06/2021 17:10	Fichier 011	14 Ko
model-demo-1.012	18/06/2021 17:10	Fichier 012	14 Ko
model-demo-1.013	18/06/2021 17:10	Fichier 013	14 Ko
model-demo-1.014	18/06/2021 17:10	Fichier 014	14 Ko
model-demo-1.015	18/06/2021 17:10	Fichier 015	14 Ko
model-demo-1.016	18/06/2021 17:10	Fichier 016	14 Ko
model-demo-1.eq	18/06/2021 17:10	Fichier EQ	1 Ko
model-demo-1.inp	18/06/2021 17:10	Fichier INP	2 Ko
🖻 model-demo-1.mod	18/06/2021 17:10	Fichier MOD	1 Ko

MRS inversion

For this example, we use the synthetic data set created in the previous section. MRS data set is composed of many filed that are headed by the "*name.inp*" file. In this example, the data set is "*model-demo-1.inp*". We load the data and the linear filter. For the records processing and inversion option we use automatic options with the default parameters.

👔 Inversion configuration	×
Data	Set
NUMIS matrix ook\data-book\matrix\sq90-example.mmt NUMIS data [C:\D\work\tst-book\data-book\models\n	Browse C Matrix C Data C Blacklist Browse View
Signal pro	cessing
Image: Constraint of the second s	Notch filter © 50 Hz C 60 Hz © Wide C Narrow Notch band 3,0
Inversion para	meters
Regularization Layers Image: auto w Image: auto Image: auto T1	to \hat{r} Cp auto
Run	Cancel

Inversion results are shown by using the user selected graphical windows and save on the hard disk in the same folder with the data set.

> D > work > tst-book > data-book > MRS-mod	lels > model-1
and model-demo-1.01	model-demo-1.02
and model-demo-1.03	model-demo-1.04
and model-demo-1.05	model-demo-1.06
and model-demo-1.07	and model-demo-1.08 🤍
and model-demo-1.09	and model-demo-1.010 and a constant and a constant a co
and model-demo-1.011	model-demo-1.012
and model-demo-1.013	and model-demo-1.014 🔊
and model-demo-1.015	and model-demo-1.016 🤍
and model-demo-1.eq	model-demo-1.f1
model-demo-1.f2	model-demo-1.f3
model-demo-1.f4	model-demo-1.f5
model-demo-1.f6	model-demo-1.f7
model-demo-1.f8	model-demo-1.f9
model-demo-1.f10	model-demo-1.f11
model-demo-1.f12	model-demo-1.f13
model-demo-1.f14	model-demo-1.f15
model-demo-1.f16	a) model-demo-1.inp
model-demo-1.mod	model-demo-1.nbl
and model-demo-1.nid	a) model-demo-1.nov
🗋 model-demo-1.nvi	model-demo-1_TF.txt

Working with synthetic data we can compare the initial model and the inverse model being the final result of MRS inversion. For reports, it is often convenient to manually define axes and graphs.

MRS and water flow modeling

For this example, we created a water flow model using HYDRUS-1D program. The model comprises two layers with different hydraulic properties. Both layers are unsaturated. The rainfall varies during the monitoring time (8000 days) and we have 11 MRS soundings (one sounding performed with an interval of every 800 days).

The water flow model is saved in the folder created by HYDRUS-1D.

Nom	~	Modifié le	Туре	Tai
A_Level.ou	t	21/06/2021 11:36	Fichier OUT	
ATMOSPH.	IN	21/06/2021 11:36	Fichier IN	
Balance.ou	t	21/06/2021 11:36	Fichier OUT	
DESCRIPT.	TXT	02/09/2016 17:38	Document texte	
HYDRUS10	D.DAT	25/06/2021 09:50	Grapher Worksheet	
I_Check.out	:	21/06/2021 11:36	Fichier OUT	
Nod_Inf.ou	t	21/06/2021 11:36	Fichier OUT	
Obs_Node.	out	21/06/2021 11:36	Fichier OUT	
PROFILE.D	AT	21/06/2021 11:36	Grapher Worksheet	
Profile.out		21/06/2021 11:36	Fichier OUT	
Run_Inf.out		21/06/2021 11:36	Fichier OUT	
SELECTOR.	N	21/06/2021 11:36	Fichier IN	
T Level.out		21/06/2021 11:36	Fichier OUT	

This model should be loaded with the *SAMOVAR - HYDRUS convertor* ("*name.out*" file). The water content provided by HYDRUS-1D can be observed at the depth corresponding to the observation points defined in HYDRUS.

If the 3-D editor is activated, then the plot of the water content can be also visualized.

Then, a set of files simulating SAMOVAR 6x7 measurements computed considering the HYDRUS provided water content can be created using the *HYD->Sam Save* button. This is done in two steps: the liners filter corresponding to the MRS measuring setup is loaded and then the data set is saved on the hard disk.

🕈 Samovar-HYDRUS-co — 🗆 🗙	🕷 Ouvrir	×
Import data Export data	Regarder dans : sand-clay-21ayer-infilt	• 🗈 📸 🎟 -
HYDRUS Load Obs.depths 0 Print times 0 Data points 0 Samovar Load © Sam © HYD Save HYD-Sam Save HYD-Sam Save Graphs Cascade © Samovar 6.6 © Side by side © Somoute volume V Position auto Ztop Zbot 0.00 1.00	Nom M Accès rapide Obs_Node.out Bureau Bibliothèques Ce PC Péseau	lodifié le Type I/06/2021 11:36 Fichie
Water column (mm	< Nom du fichier : Types de fichiers : HYDRUS data (*.out)	Ouvrir Annuler

🗱 Ouvrir			×	🌋 Enregistrer s	ous			×
Regarder dans :	matrix 💌	← 🗈 💣 🎟▼		Enregistrer dans :	Model-for-HYDR	JS 💽	← 🗈 💣 🔳 ◄	
Accès rapide Bureau Bibliothèques Ce PC Qèseau	Nom ^	Modifié le 18/06/2021 16:03	Type Fichie	Accès rapide Bureau Bibliothèques Ce PC Qé PC	Nom Model-for-HYE	^ IRUS Shm	Modifié le 22/06/2021 17:43 22/06/2021 17:43	Type Dossie Fichie
	Nom du fichier : J Types de fichiers : Samovar matrix (*.mm)	▼ 0 ▼ Ar	> uvrir inuler		< Nom du fichier : Type : S	amovar models (*.shm)	•	> Enregistrer Annuler

For loading MRS water content, MRS measurements have to be processed using the *SAMOVAR inversion* program. Each sounding is processed individually. The time-lapse inversion is not supported by SAMOVAR 6x7 version. When inversion is done, MRS water content can be loaded by using the *Samovar 6.6 Load* button. The water content can be visualized at HYDRUS observation points and using the *3-D editor*.

An example of the error message shown below says that inversion of one of the sounding (Time_11) was not completed.

Set the depth interval for computing the water column (*Compute volume*) and compare the HYDRUS and SAMOVAR water column. The water content at the observation points is shown in the graphical windows. The red squares show the HYDRUS water content corrected considering the difference between the MRS and water flow modeling. Note that if the hydraulic model is changed, then the water contents for both HYDRUS and SAMOVAR have to be reloaded. If visualization or the depth interval for computing the water column are changed, then SAMOVAR data have to be reloaded.

For observing the entire data set, we activate the *3-D editor*. We reduce the depth interval for computing the water column thus getting a better resolution of the MRS water content estimate at shallow depth. And we reload MRS data (*Load*). The difference between the water contents along profile varies between -0.18 and 0.23 and the mean-square difference computed considering the entire data set is 0.07.

We get this result using the default parameters for MRS inversion. The difference can be reduced by selecting another equivalent MRS inverse model. We can also change the water flow model for better adjusting MRS measurements. Thus, the uncertainty in the modeling results is defined by the equivalence problem for both MRS and water flow modeling.

The computed water contents are automatically stored in the hard disk. These files can be visualized using the Surfer and Grapher programs.

D > work > tst-book > data-book > HYDRU	IS-model > infiltration-2-layers >	HYDRUS_to_Surfer
^ Nom	Modifié le	Туре
HYDRUS_to_Surfer.dat	26/06/2021 07:38	Grapher Worksheet
tst-book > data-book > MRS-models > Model-	for-HYDRUS > model-for-HYDRUS	> Samovar_to_Surfer
tst-book > data-book > MRS-models > Model-	for-HYDRUS > model-for-HYDRUS Modifié le	> Samovar_to_Surfer
tst-book > data-book > MRS-models > Model-	for-HYDRUS > model-for-HYDRUS Modifié le 26/06/2021 08:45	 Samovar_to_Surfer Type Grapher Workshee
tst-book > data-book > MRS-models > Model-	for-HYDRUS > model-for-HYDRUS Modifié le 26/06/2021 08:45 26/06/2021 08:45	 Samovar_to_Surfer Type Grapher Workshee Grapher Workshee

Chapter 6. SAMOVAR 6x7: file formats

"name.nmc": parameters for computing the linear filter (the matrix)

This file contains parameters for computing the linear filter (the matrix). This can be red with *SAMOVAR 6x7 computing* program.

sq80-exa	mple.nmc -	Bloc-notes																		
Fichier Edit	ion Format	Affichage	Aide																	
2.00	80.00	0.00	1.00	0.00	0.00	0.00														
0.00	0.00	0.00	0.00	0.00	0.00	0.00														
2000.00	-55.00	120.00	40.00	16000.00	0.00	0.00														
3.00	20.00	10.00	40.00	80.00	300.00	300.00	0.00	0.00	0.00	0.00	0.00	0.00								
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
0.00	0.00	0.00																		
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

"name.mrm": the linear filter (the matrix)

This file contains coefficients for computing the linear filter. This can be red with *SAMOVAR 6x7 inversion* and *SAMOVAR 6x7 forward modeling* programs.

🤳 sq80-exam	ple.mrm -	Bloc-notes	
Fichier Edition	Format	Affichage	Aide
-55 2	80.00	2000.00	
0.0200 10	0000000	.00	
20.0000	10	.00	
40.0000	80	.00	
300.0000	300	.00	
0.0000	0	.00	
0.0000	0	.00	
0.0000	0	.00	
1.00	00	0.0500	
1.32	34	0.0997	
1.64	91	0.1536	
1.98	32	0.2139	
2.33	55	0.2817	
2.72	00	0.3584	
3.15	48	0.4450	
3.66	17	0.5425	
4.26	67	0.6516	
4.99	97	0.7733	

	А	В	С	D
1	-55	2	80.00	2000.00
2	0.0200	10000000.00		
3	20.0000	10.00		
4	40.0000	80.00		
5	300.0000	300.00		
6	0.0000	0.00		
7	0.0000	0.00		
8	0.0000	0.00		
9	1.0000	0.0500		
10	1.3234	0.0997		
11	1.6491	0.1536		
12	1.9832	0.2139		
13	2.3355	0.2817		
14	2.7200	0.3584		
15	3.1548	0.4450		
16	3.6617	0.5425		
17	4.2667	0.6516		
18	4.9997	0.7733		
19	5.8945	0.9082		
20	6.9892	1.0572		

A1 – the inclination of the geomagnetic field (degr.); B1 – loop type; C1 – Loop size (m); D1 – the Larmor frequency (Hz).

Lines 2 - 8: A – depth (m); B- resistivity (Ω .m).

Lines 9 - 108: coefficients for computing the linear filter.

"name.mod": MRS forward modeling parameters

This file contains parameters of the MRS forward model and can be red with *SAMOVAR 6x7 forward modeling* program.

"name.eq": synthetic MRS signal

The amplitude of the MRS signal in this file is computed considering the relaxation with the time constant T_2^* and the dead time of 40 ms.

Fichier Edition Format Affichage Aide
60.00 7.86 9.82 12.58 51.34 4.50 5.63 7.20 51.34
85.42 11.46 14.25 18.28 51.18 6.56 8.16 10.47 51.18
121.61 16.05 20.14 25.75 51.45 9.19 11.53 14.75 51.45
173.12 23.09 28.98 37.06 51.46 13.22 16.60 21.22 51.46
246.47 32.91 41.26 52.78 51.42 18.85 23.63 30.22 51.42
350.88 46.67 58.62 74.93 51.48 26.72 33.57 42.90 51.48
499.53 65.66 82.86 105.72 51.60 37.60 47.44 60.53 51.60
711.16 91.70 115.77 147.68 51.62 52.50 66.29 84.56 51.62
1012.44 124.61 158.67 201.75 51.86 71.35 90.85 115.52 51.86
1441.35 161.78 208.78 264.12 52.23 92.63 119.54 151.23 52.23
2051.97 189.78 252.99 316.26 53.12 108.67 144.86 181.09 53.12
2921.28 179.63 260.19 316.18 55.38 102.85 148.98 181.04 55.38
4158.87 104.47 196.99 222.97 62.06 59.82 112.79 127.67 62.06
5920.76 13.10 106.11 106.91 82.96 7.50 60.76 61.22 82.96
8429.06 -14.08 77.78 79.04 100.26 -8.06 44.54 45.26 100.26
12000.00 -14.41 78.60 79.91 100.39 -8.25 45.00 45.75 100.39

The table comments these data.

	А	В	С	D	E	F	G	Н	1	
1	60.00	7.86	9.82	12.58	51.34	4.50	5.63	7.20	51.34	
2	85.42	11.46	14.25	18.28	51.18	6.56	8.16	10.47	51.18	
3	121.61	16.05	20.14	25.75	51.45	9.19	11.53	14.75	51.45	
4	173.12	23.09	28.98	37.06	51.46	13.22	16.60	21.22	51.46	
5	246.47	32.91	41.26	52.78	51.42	18.85	23.63	30.22	51.42	
6	350.88	46.67	58.62	74.93	51.48	26.72	33.57	42.90	51.48	
7	499.53	65.66	82.86	105.72	51.60	37.60	47.44	60.53	51.60	
8	711.16	91.70	115.77	147.68	51.62	52.50	66.29	84.56	51.62	
9	1012.44	124.61	158.67	201.75	51.86	71.35	90.85	115.52	51.86	
10	1441.35	161.78	208.78	264.12	52.23	92.63	119.54	151.23	52.23	
11	2051.97	189.78	252.99	316.26	53.12	108.67	144.86	181.09	53.12	
12	2921.28	179.63	260.19	316.18	55.38	102.85	148.98	181.04	55.38	
13	4158.87	104.47	196.99	222.97	62.06	59.82	112.79	127.67	62.06	
14	5920.76	13.10	106.11	106.91	82.96	7.50	60.76	61.22	82.96	
15	8429.06	-14.08	77.78	79.04	100.26	-8.06	44.54	45.26	100.26	
16	12000.00	-14.41	78.60	79.91	100.39	-8.25	45.00	45.75	100.39	
17										

Lines 1-16: A – the pulse moment (A-ms); B – real amplitude of the FID1 signal (nV); C – imaginary amplitude of the FID1 signal (nV); D – amplitude of the FID1 signal (nV); E - phase of the FID1 signal (degr.); F – real amplitude of the FID2 signal (nV); G – imaginary amplitude of the FID2 signal (nV); H – amplitude of the FID2 signal (nV); I - phase of the FID2 signal (degr.).

"name.inp": data summary file

"*name .inp*" file is generated by the data acquisition program or by a forward modeling program. This file is generated by the MRS forward modeling program (SAMOVAR 6x7).

			_	_								
	model-demo-1.inp - Bloc-notes											
Fich	Fichier Edition Format Affichage Aide											
Mod	lel: It	t is a de	mo mod	el								
Loo	p: 2	- 80.0 x	N Dat	e: 24.0	6.202	21: Ti	me: 17:39					
N	a	e	t2	noise	Udc	frea	phase					
	2	16 900	0.0									
	0	0 0	0	0 0	.00	0						
1	59	12.58	0	0.0	0	2000.00	51					
2	85	18.28	0	0.0	0	2000.00	51					
3	121	25.75	0	0.0	0	2000.00	51					
4	173	37.06	0	0.0	0	2000.00	51					
5	246	52.78	0	0.0	0	2000.00	51					
6	350	74.93	0	0.0	0	2000.00	51					
7	499	105.72	0	0.0	0	2000.00	51					
8	711	147.68	0	0.0	0	2000.00	51					
9	1012	201.75	0	0.0	0	2000.00	51					
10	1441	264.12	0	0.0	0	2000.00	52					
11	2051	316.26	0	0.0	0	2000.00	53					
12	2921	316.18	0	0.0	0	2000.00	55					
13	4158	222.97	0	0.0	0	2000.00	62					
14	5920	106.91	0	0.0	0	2000.00	82					
15	8429	79.04	0	0.0	0	2000.00	100					
16	11999	79.91	0	0.0	0	2000.00	100					

Line 3: N = number of q value; q – first pulse parameter; e – FID1 amplitude; T2 – FID1 relaxation time T2*; mean ambient noise; Udc – DC/DC voltage; freq – FID1 signal frequency; phase – FID1 signal phase.

Line 4: 2 – antenna type; 16 number of Q values; 9000 – amplification factor. Since *Line 5* – MRS data.

"name.00", "name.01", "name.02", ..., "name.0N": raw-data time series

Each file contains time-records corresponding to one value of pulse moment after stacking.

🧾 mod	model-demo-1.01 - Bloc-notes											
Fichier E	Edition Form	at Afficha	age Aide									
2000.00	0	0	2	0 0	0.00	0.00	120					
120	112 20	320	120 1	60 20	320 120	0	0					
0.00	27.79	-49.77	43.69	0.00	0.71	36.69	43.69	0.00	-45.64	-40.50	0.00	0.00
2.00	-36.50	-40.32	43.69	0.00	9.88	42.04	43.69	0.00	-33.53	42.51	0.00	0.00
4.00	-30.46	3.89	43.69	0.00	25.81	18.18	43.69	0.00	-14.25	7.57	0.00	0.00
6.00	11.16	-44.24	43.69	0.00	-28.23	52.52	43.69	0.00	-14.86	0.73	0.00	0.00
8.00	28.47	37.74	43.69	0.00	-30.94	11.62	43.69	0.00	-19.96	-4.40	0.00	0.00
10.00	21.05	47.81	43.69	0.00	-21.74	31.33	43.69	0.00	-48.99	-6.56	0.00	0.00
12.00	-17.50	-49.68	43.69	0.00	3.08	42.53	43.69	0.00	-28.42	-28.23	0.00	0.00
14.00	11.51	-33.55	43.69	0.00	19.95	-15.23	43.69	0.00	31.49	31.71	0.00	0.00
16.00	-15.17	-33.35	43.69	0.00	1.88	0.96	43.69	0.00	1.42	-3.74	0.00	0.00
18.00	25.10	-2.14	43.69	0.00	-25.49	9.29	43.69	0.00	22.09	-23.57	0.00	0.00
20.00	-42.19	10.24	43.69	0.00	-13.72	49.43	43.69	0.00	-10.70	38.32	0.00	0.00
22.00	-18.98	25.44	43.69	0.00	36.29	8.70	43.69	0.00	-9.70	42.83	0.00	0.00
24.00	-34.89	-37.17	43.69	0.00	49.81	29.40	43.69	0.00	-46.83	-6.55	0.00	0.00
26.00	-48.40	-43.76	43.69	0.00	19.78	-22.76	43.69	0.00	18.68	-39.57	0.00	0.00
28.00	-47.12	-9.74	43.69	0.00	2.39	-32.28	43.69	0.00	18.32	-36.30	0.00	0.00
30.00	-40.37	21.33	43.69	0.00	-39.24	-14.93	43.69	0.00	-4.47	-20.98	0.00	0.00
32.00	-22.79	26.28	43.69	0.00	-29.80	20.04	43.69	0.00	14.80	18.24	0.00	0.00

Line 1: clock frequency (Hz); the current pulse phase shift (degr); the amplifier phase shift (degr); antenna type; mean ambient noise (nV); Udc/dc (V); amplification factor; Tx impedance (Ω); number of readings.

Line 2: parameters of the measuring sequence.

Since *Line 3*: time (ms); noise channel X (nV); noise channel Y (nV); the first pulse channel X; the first pulse channel Y; signal FID1 channel X (nV); signal FID1 channel Y (nV); the second pulse channel X; the second pulse channel Y; signal FID2 channel X (nV); signal FID2 channel Y (nV); signal SE channel X (nV); signal SE channel Y (nV).

"name.f0", "name.f1", "name.f2", ..., "name.fN"": filtered time series

Each file contains filtered time-records corresponding to one value of pulse moment.

model-demo-1.f1 - Bloc-notes									
Fichier Edition Format Affichage Aide									
105									
0.0 24.142 6.406 -4.610 -8.881 -3.851 24.796 -16.456 4.267	0.000	0.000							
2.0 20.468 9.346 0.202 -5.307 -6.291 21.686 -13.698 -0.923	0.000	0.000							
4.0 18.203 10.384 1.902 -5.966 -7.759 19.753 -12.427 -1.802	0.000	0.000							
6.0 14.343 4.906 -2.304 -5.001 -2.733 15.026 -10.026 -1.453	0.000	0.000							
8.0 13.823 0.995 -8.402 -12.559 2.224 13.713 -5.839 -0.129	0.000	0.000							
10.0 11.135 -2.463 -12.947 -17.052 5.126 10.250 0.057 1.784	0.000	0.000							
12.0 8.464 -1.923 -14.717 -11.057 4.979 7.703 1.128 4.007	0.000	0.000							
14.0 11.307 -0.966 -19.379 -7.179 4.179 10.620 -3.790 1.006	0.000	0.000							
16.0 12.036 -2.619 -22.183 -5.014 6.293 10.758 -6.082 1.881	0.000	0.000							
18.0 10.502 -2.899 -21.832 -4.659 6.671 9.093 -6.765 -0.188	0.000	0.000							
20.0 5.777 -2.233 -16.758 -7.014 4.448 4.728 -5.039 -6.669	0.000	0.000							
22.0 3.796 -2.865 -16.063 -6.127 4.095 2.572 -4.934 -9.284	0.000	0.000							
24.0 1.893 -2.482 -14.157 -5.027 3.325 0.861 -4.875 -11.482	0.000	0.000							
26.0 0.589 -1.920 -11.237 -3.863 2.507 -0.188 -5.089 -13.010	0.000	0.000							
28.0 0.322 -2.041 -7.832 -2.942 2.008 -0.520 -5.700 -13.815	0.000	0.000							
30.0 0.172 -1.022 -4.662 -2.467 1.965 -0.271 -6.567 -13.959	0.000	0.000							
32.0 1.141 -1.670 -2.354 -2.356 2.220 0.302 -7.340 -13.524	0.000	0.000							
34.0 1.733 -1.363 -1.163 -2.330 2.468 0.929 -7.694 -12.621	0.000	0.000							
36.0 2.206 -1.092 -0.866 -2.180 2.496 1.435 -7.575 -11.505	0.000	0.000							

Line 1: number of readings.

Since *Line 2*: time (ms); signal FID1 amplitude (nV); signal FID1 noise (nV); noise channel X (nV); noise channel Y (nV); signal FID1 channel X (nV); signal FID1 channel Y (nV); signal FID2 channel X (nV); signal FID2 channel X (nV); signal SE channel X (nV); signal SE channel Y (nV).

"name.nvi": inversion summary file

```
model-demo-1.nvi - Bloc-notes
Fichier Edition Format Affichage Aide
Model: It is a demo model
Loop: 2 - 80.0 x N Date: 24.06.2021;
                                                Time: 17:39
NUMIS data set: C:\D\work\tst-book\data-book\MRS-models\model-1\model-demo-1.inp
matrix: C:\D\work\tst-book\data-book\matrix\sq80-example.mrm
loop: square, side = 80.0 m
geomagnetic field:
inclination=-55 degr, magnitude= 46948.36 nT
filtering window = 200.0 ms
bandpass = 10.00 Hz
permeability constant Cp = 7.00e-09
average S/N = 7.59; EN/IN = 2.13
mean_noise = 5.56 nV
fitting error
  RMSE FID1 =
                  5.81 nV
                   7.16 nV
  RMSE FID2 =
  RMSE T1 = 120.08 ms
param. of regular. (PR)
  PR w = 63.2
PR T1 = 182.152
number of layers = 16
number of pulse moments = 16
```

"name.nov": inversion results

model-demo-1.nov - Bloc-notes	-		\times
Fichier Edition Format Affichage Aide			
120 112 20 320 120 160 20 320 120 0 0 16 16 -55 2000.0 2 80.0			
0.0 1.0 0.5 0.0000 0.0 0.0000 0.0 0.000000e+00 0.000000e+00			
1.0 2.0 1.5 0.0000 0.0 0.0000 0.0 0.00000e+00 0.00000e+00			- 1
2.0 3.0 2.5 0.0000 0.0 0.0000 0.0 0.000000e+00 0.000000e+00			
3.0 4.0 3.5 0.0000 0.0 0.0000 0.0 0.00000e+00 0.00000e+00			
4.0 5.0 4.5 0.0000 0.0 0.0000 0.0 0.00000e+00 0.00000e+00			
5.0 6.0 5.5 0.0000 0.0 0.0000 0.0 0.00000e+00 0.00000e+00			
6.0 8.2 7.1 0.7508 209.9 0.9076 376.4 9.002296e-06 1.900420e-05			- 1
8.2 11.0 9.6 0.0000 0.0 0.0000 0.0 0.000000e+00 0.000000e+00			- 1
11.0 14.8 12.9 0.0000 0.0 0.0000 0.0 0.000000e+00 0.00000e+00			- 1
14.8 20.0 17.4 0.3286 210.2 0.3971 377.1 3.952239e-06 2.050509e-05			- 1
20.0 27.0 23.5 15.9342 188.3 19.6830 392.6 2.123239e-04 1.486591e-03			- 1
27.0 36.5 31.8 18.7965 206.8 22.7857 367.5 2.154112e-04 2.035331e-03			- I
36.5 49.2 42.9 1.4290 214.7 1.7202 377.1 1.712394e-05 2.183457e-04			
49.2 66.4 57.8 0.0000 0.0 0.0000 0.0 0.00000e+00 0.00000e+00			
66.4 89.7 78.1 0.0000 0.0 0.0000 0.0 0.00000e+00 0.00000e+00			
89.7 120.0 104.8 0.0000 0.0 0.0000 0.0 0.00000e+00 0.000000e+00			
59.999 12.026 13.355 279.490 2001.5 126.588 10.5 10.60 1.01 0.0 60.0 10.134 183.80 13.355 7.580 395.7 8.479 12.026	10.134		
85.419 20.831 19.132 474.287 1999.3 2.056 16.2 18.81 1.16 0.0 85.4 9.806 534.39 19.132 10.861 395.6 11.915 20.831	9.806		
121.605 18.018 27.279 1000.000 1999.7 32.323 7.7 18.93 2.45 0.0 121.6 15.711 165.42 27.279 15.495 395.6 15.968 18.018	15.711		
173.131 41.449 38.862 135.882 2000.2 67.913 11.4 23.05 2.02 0.0 173.1 18.681 567.51 38.862 22.097 395.5 16.134 41.449	18.681		
246.465 48.168 55.153 164.104 1999.6 34.831 12.7 29.74 2.35 0.0 246.5 40.023 191.30 55.153 31.415 395.4 18.199 48.168	40.023		
350.876 81.516 77.902 183.080 2000.4 76.226 12.5 51.03 4.07 0.0 350.9 38.181 538.11 77.902 44.519 395.3 30.101 81.516	38.181		
499.535 117.141 109.040 154.068 2000.1 62.288 10.5 66.38 6.31 0.0 499.5 59.612 478.14 109.040 62.678 395.1 40.683 117.	141 59.	612	
711.159 149.928 150.487 165.571 1999.9 45.845 8.8 88.14 10.04 0.0 711.2 86.450 395.60 150.487 87.264 394.7 58.024 149.	928 86.	450	
1012.432 198.328 202.405 189.321 2000.0 51.422 10.6 123.69 11.66 0.0 1012.4 109.348 424.20 202.405 118.474 393.9 71.948 1	98.328	109.34	48
1441.351 258.847 261.736 184.617 2000.1 54.541 11.6 159.35 13.71 0.0 1441.4 162.371 344.50 261.736 153.374 392.2 93.769 2	58.847	162.37	71
2051.971 313.938 311.151 202.688 2000.0 51.811 8.2 200.98 24.60 0.0 2052.0 170.610 433.64 311.151 180.116 388.9 112.235	313.938	170.6	510
2921.279 312.082 305.324 191.677 2000.1 58.816 8.0 195.32 24.44 0.0 2921.3 190.487 360.72 305.324 174.958 382.5 112.456	312.082	190.4	487
4158.874 214.424 209.785 227.534 2000.1 65.611 9.3 143.71 15.44 0.0 4158.9 131.657 357.17 209.785 124.209 374.4 81.845 2	14.424	131.65	57
5920.751 98.801 107.610 300.596 1999.9 78.863 12.3 72.93 5.91 0.0 5920.8 59.086 373.06 107.610 68.416 378.4 37.339 98.8	01 59.0	86	
8429.067 77.682 79.249 196.732 1999.8 88.166 8.5 49.62 5.84 0.0 8429.1 42.786 424.87 79.249 48.974 390.0 29.381 77.682	42.786		
11999.995 70.915 82.544 198.631 2000.1 100.305 12.0 45.58 3.79 0.0 12000.0 48.574 294.36 82.544 48.588 382.8 24.824 70.	915 48.	574	

It is convenient to describe these data cut into a two tables:

	А	В	С	D	E	F	G	Н	1	J	К	L	М	Ν	0	Р	Q	R	S
1		120	112	20	320	120	160	20	320	120	0	0							
2	16	16	-55	2000.0	2	80.0													
3	0.0	1.0	0.5	0.0000	0.0	0.0000	0.0	0.000000e+00	0.000000e+00										
4	1.0	2.0	1.5	0.0000	0.0	0.0000	0.0	0.000000e+00	0.000000e+00										
5	2.0	3.0	2.5	0.0000	0.0	0.0000	0.0	0.000000e+00	0.000000e+00										
6	3.0	4.0	3.5	0.0000	0.0	0.0000	0.0	0.000000e+00	0.000000e+00										
7	4.0	5.0	4.5	0.0000	0.0	0.0000	0.0	0.000000e+00	0.000000e+00										
8	5.0	6.0	5.5	0.0000	0.0	0.0000	0.0	0.000000e+00	0.000000e+00										
9	6.0	8.2	7.1	0.7508	209.9	0.9076	376.4	9.002296e-06	1.900420e-05										
10	8.2	11.0	9.6	0.0000	0.0	0.0000	0.0	0.000000e+00	0.000000e+00										
11	11.0	14.8	12.9	0.0000	0.0	0.0000	0.0	0.000000e+00	0.000000e+00										
12	14.8	20.0	17.4	0.3286	210.2	0.3971	377.1	3.952239e-06	2.050509e-05										
13	20.0	27.0	23.5	15.9342	188.3	19.6830	392.6	2.123239e-04	1.486591e-03										
14	27.0	36.5	31.8	18.7965	206.8	22.7857	367.5	2.154112e-04	2.035331e-03										
15	36.5	49.2	42.9	1.4290	214.7	1.7202	377.1	1.712394e-05	2.183457e-04										
16	49.2	66.4	57.8	0.0000	0.0	0.0000	0.0	0.000000e+00	0.000000e+00										
17	66.4	89.7	78.1	0.0000	0.0	0.0000	0.0	0.000000e+00	0.000000e+00										
18	89.7	120.0	104.8	0.0000	0.0	0.0000	0.0	0.000000e+00	0.000000e+00										

Line 1: parameters of the measuring sequence.

Line 2: A - number of layers in the inverse model; B – number of pulse moments; C - inclination of the geomagnetic field (degr.); D – the Larmor frequency; E – loop type; F – loop size.

Lines 3 - 18: A - depth from (m); B – depth to (m); C – depth layer-center (m); D – water content nonextrapolated (%); E – T2* (ms); F – water content extrapolated (%); G – T1 (ms); H - permeability (hydraulic conductivity) (m/s) of the corresponding layer; I – transmissivity (m²/s) of the corresponding layer.

	А	В	С	D	Е	F	G	н	1	J	К	L	М	N	0	Р	Q	R	S
19	59.999	12.026	13.355	279.490	2001.5	126.588	10.5	10.60	1.01	0.0	60.0	10.134	183.80	13.355	7.580	395.7	8.479	12.026	10.134
20	85.419	20.831	19.132	474.287	1999.3	2.056	16.2	18.81	1.16	0.0	85.4	9.806	534.39	19.132	10.861	395.6	11.915	20.831	9.806
21	121.605	18.018	27.279	1000.000	1999.7	32.323	7.7	18.93	2.45	0.0	121.6	15.711	165.42	27.279	15.495	395.6	15.968	18.018	15.711
22	173.131	41.449	38.862	135.882	2000.2	67.913	11.4	23.05	2.02	0.0	173.1	18.681	567.51	38.862	22.097	395.5	16.134	41.449	18.681
23	246.465	48.168	55.153	164.104	1999.6	34.831	12.7	29.74	2.35	0.0	246.5	40.023	191.30	55.153	31.415	395.4	18.199	48.168	40.023
24	350.876	81.516	77.902	183.080	2000.4	76.226	12.5	51.03	4.07	0.0	350.9	38.181	538.11	77.902	44.519	395.3	30.101	81.516	38.181
25	499.535	117.141	109.040	154.068	2000.1	62.288	10.5	66.38	6.31	0.0	499.5	59.612	478.14	109.040	62.678	395.1	40.683	117.141	59.612
26	711.159	149.928	150.487	165.571	1999.9	45.845	8.8	88.14	10.04	0.0	711.2	86.450	395.60	150.487	87.264	394.7	58.024	149.928	86.450
27	1012.432	198.328	202.405	189.321	2000.0	51.422	10.6	123.69	11.66	0.0	1012.4	109.348	424.20	202.405	118.474	393.9	71.948	198.328	109.348
28	1441.351	258.847	261.736	184.617	2000.1	54.541	11.6	159.35	13.71	0.0	1441.4	162.371	344.50	261.736	153.374	392.2	93.769	258.847	162.371
29	2051.971	313.938	311.151	202.688	2000.0	51.811	8.2	200.98	24.60	0.0	2052.0	170.610	433.64	311.151	180.116	388.9	112.235	313.938	170.610
30	2921.279	312.082	305.324	191.677	2000.1	58.816	8.0	195.32	24.44	0.0	2921.3	190.487	360.72	305.324	174.958	382.5	112.456	312.082	190.487
31	4158.874	214.424	209.785	227.534	2000.1	65.611	9.3	143.71	15.44	0.0	4158.9	131.657	357.17	209.785	124.209	374.4	81.845	214.424	131.657
32	5920.751	98.801	107.610	300.596	1999.9	78.863	12.3	72.93	5.91	0.0	5920.8	59.086	373.06	107.610	68.416	378.4	37.339	98.801	59.086
33	8429.067	77.682	79.249	196.732	1999.8	88.166	8.5	49.62	5.84	0.0	8429.1	42.786	424.87	79.249	48.974	390.0	29.381	77.682	42.786
34	11999.995	70.915	82.544	198.631	2000.1	100.305	12.0	45.58	3.79	0.0	12000.0	48.574	294.36	82.544	48.588	382.8	24.824	70.915	48.574

Lines 19-34: A – the first pulse moment (A-ms); B – measured FID1 amplitude (nV); C – FID1 reconstructed after inversion (nV); D – T2* (ms) for FID1; E – signal FID1 frequency (Hz); F – FID1 phase (degr.); G – mean noise after stacking (nV); H – signal FID1 mean amplitude (nV); I – FID1 signal to noise ratio; J – ambient noise (nV); K – the second pulse moment (A-ms); L – measured FID2 amplitude (nV) for T1 inversion; M – T1 (ms); N – FID1 reconstructed after inversion (nV); O – FID2 reconstructed after inversion (nV); P – T1 reconstructed after inversion (ms); Q – signal FID1 mean amplitude (nV); R – measured FID1 amplitude (nV); S – signal FID2 amplitude reconstructed after inversion (nV).

"name.nbl": the black list

This file contains parameters of the FID1 signal. Records corresponding to one pulse moment have a quality assignment: good – this record is used for the inversion; bad – this record is blacklisted and is excluded from the data set for inversion. The blacklist can be red with **SAMOVAR 6x7 inversion** program.

/ mode	el-demo-1.	nbl - Bloc-notes				
Fichier E	dition Fo	rmat Affichage	Aide			
qualite	record	q(A-ms)	E(nV) T2(ms)	freq(Hz)	phase(degr)	
good	1	60.00	12.03	279.49	2001.55	126.59
good	2	85.42	20.83	474.29	1999.31	2.06
good	3	121.60	18.02	1000.00	1999.74	32.32
good	4	173.13	41.45	135.88	2000.24	67.91
good	5	246.46	48.17	164.10	1999.55	34.83
good	6	350.88	81.52	183.08	2000.45	76.23
good	7	499.53	117.14	154.07	2000.12	62.29
good	8	711.16	149.93	165.57	1999.93	45.84
good	9	1012.43	198.33	189.32	1999.98	51.42
good	10	1441.35	258.85	184.62	2000.05	54.54
good	11	2051.97	313.94	202.69	1999.97	51.81
good	12	2921.28	312.08	191.68	2000.05	58.82
good	13	4158.87	214.42	227.53	2000.07	65.61
good	14	5920.75	98.80	300.60	1999.91	78.86
good	15	8429.07	77.68	196.73	1999.85	88.17
good	16	12000.00	70.92	198.63	2000.07	100.30

"name.nid": records for inversion

This file contains the amplitudes of FID1 signal versus time used for inversion and corresponding to each pulse moment.

amode []]	model-demo-1.nid - Bloc-notes															
Fichier E	Fichier Edition Format Affichage Aide															
100	100															
5.0	320.7	636.4	952.0	1267.7	1583.4	1899.1	2214.8	2530.4	2846.1	3161.8	3477.5	3793.2	4108.9	4424.5	4740.2	5055.9
0.00	24	18	13	39	61	82	122	148	198	255	314	316	213	107	89	86
2.00	20	12	13	39	58	81	119	143	197	257	305	310	214	101	92	88
4.00	18	8	11	43	61	84	112	141	198	254	296	306	214	93	92	82
6.00	14	9	13	41	56	83	103	143	197	246	290	302	211	92	85	77
8.00	14	13	15	41	49	81	97	147	191	241	288	297	203	95	79	74
10.00	11	15	23	43	46	80	93	149	185	234	280	287	203	99	72	72
12.00	8	15	25	42	42	76	88	149	185	229	279	278	205	99	67	64
14.00	11	11	23	49	40	77	91	144	180	225	280	276	199	95	63	61
16.00	12	13	28	47	34	76	94	143	177	223	284	274	193	96	60	56
18.00	11	15	28	45	32	75	97	140	175	223	288	273	192	96	60	55

	Α	В	С	D	E	F	G	Н		J	K	L	М	Ν	0	Р	Q
1	100																
2	5.0	320.7	636.4	952.0	1267.7	1583.4	1899.1	2214.8	2530.4	2846.1	3161.8	3477.5	3793.2	4108.9	4424.5	4740.2	5055.9
3	0.00	24	18	13	39	61	82	122	148	198	255	314	316	213	107	89	86
4	2.00	20	12	13	39	58	81	119	143	197	257	305	310	214	101	92	88
5	4.00	18	8	11	43	61	84	112	141	198	254	296	306	214	93	92	82
6	6.00	14	9	13	41	56	83	103	143	197	246	290	302	211	92	85	77
7	8.00	14	13	15	41	49	81	97	147	191	241	288	297	203	95	79	74
8	10.00	11	15	23	43	46	80	93	149	185	234	280	287	203	99	72	72
9	12.00	8	15	25	42	42	76	88	149	185	229	279	278	205	99	67	64
10	14.00	11	11	23	49	40	77	91	144	180	225	280	276	199	95	63	61
11	16.00	12	13	28	47	34	76	94	143	177	223	284	274	193	96	60	56
12	18.00	11	15	28	45	32	75	97	140	175	223	288	273	192	96	60	55
13	20.00	6	17	20	43	34	76	99	136	175	227	291	275	196	96	66	60
14	22.00	4	18	19	40	32	74	98	133	172	225	290	273	193	95	65	59
15	24.00	2	18	19	38	31	73	99	129	169	222	288	271	192	95	65	57
16	26.00	1	19	18	36	32	72	99	126	167	220	286	270	191	95	66	56
17	28.00	0	19	17	34	33	70	99	123	166	219	283	270	191	95	67	55

A1 – number of the signal records.

Line 2: the amplitude shifts for graphical representation with SAMOVAR 6x7. *Lines 3 - 102*: A – time (ms); from B to Q – amplitude of the FID1 signal (nV).

"name_TF.txt": parameters for the Tikhonov regularization

This file contains parameter for using with the Tikhonov regularization method. The "optimal" regularization is set automatically if the option "*auto*" is used. Otherwise this is the user defined value.

model-demo-1_TF.txt - Bloc-notes										
Fichier	Edition Form	at Affichage A	Aide							
Water	content re	gularization								
Optim	al solution	for Par.Regu	ul.= 63.24	6						
Par.R	egul. for T	1 = 182.152								
N P	ar.Regul.	TF	RMSE(nV)	dw/dz norm L2	w norm L2					
0	0.000	0.080384	4.258	0.266701	0.259518					
1	2.000	0.080368	4.261	0.266549	0.259462					
2	5.657	0.080034	4.274	0.264487	0.258665					
3	10.392	0.079511	4.303	0.261058	0.257329					
4	16.000	0.079033	4.349	0.257503	0.255933					
5	22.361	0.078632	4.411	0.254009	0.254545					
6	29.394	0.078320	4.487	0.250680	0.253204					
7	37.041	0.078096	4.575	0.247563	0.251929					
8	45.255	0.077952	4.672	0.244673	0.250726					
9	54.000	0.077853	4.812	0.241069	0.249182					
10	63.246	0.077799	5.030	0.235930	0.246965					
11	72.966	0.077834	5.263	0.230904	0.244815					
12	83.138	0.077948	5.506	0.226014	0.242740					
13	93.744	0.078129	5.755	0.221280	0.240747					
14	104.766	0.078365	6.008	0.216712	0.238837					
15	116.190	0.078647	6.262	0.212327	0.237017					

Index

Α

All_nov, 30 amplitude inversion, 14

В

Bandpass, 20 Blacklist, 19, 20

С

Compute volume, 23, 38 computing, 4, 5, 8, 9, 10, 12, 20, 28, 32, 38, 39, 41 *control bar*, 16 *Control bar*, 16 *convertor*, 4, 6, 23

Ε

EN/IN, 21 *Export data*, 25

F

F10, 14 F3, 14 F4, 16 field data set, 28 format, 23, 28 forward modeling, 4, 5, 6, 10, 11, 26, 27, 31, 42 *Frequency shift*, 10

G

Geoelectrical cross-section, 10 Geoelectrical model, 11 Graphical menu, 13 Graphics menu, 15, 17

Η

HYDRUS-1D, 6, 23, 30, 35, 36

I

inversion, 4, 5, 6, 10, 11, 12, 14, 17, 19, 20, 21, 23, 26, 29, 33, 34, 38, 40, 44, 45, 46 *Inversion configuration*, 19 *Inversion parameters*, 20 *inversion results*, 14, 20, 21

L

Larmor frequency, 9, 31 linear filter, 4, 5, 9, 10, 11, 12, 19, 27, 31, 32, 33 Loop types, 8

Μ

Main window, 14, 17, 21, 23, 25 Make model, 12 matrix, 11, 12, 19, 27, 32 measuring sequence, 11 model-demo-1.inp, 33 modeling conditions, 31 MRS, 4, 5, 6, 12, 20, 21, 23, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40

Ν

name.inp, 19, 28, 33, 42 name.mrm, 10, 19 name.nmc, 10 name.nov, 11, 21, 45 name.nvi, 21, 44 name.out, 36 name.shm, 27, 28 noise, 11, 19, 21, 27, 32, 43 **Notch filter**, 20 NUMIS, 4, 5, 6, 19, 21

Ρ

Parameters for computing, 9 pulse moment, 9, 10, 11, 20, 21, 31

R

RC filter, 20 resolution, 4, 26, 39 root-mean-square, 12, 25 *Run*, 10, 14, 20

S

SAMOVAR – HYDRUS convertor, 28 Samovar 6.6, 23, 38 SAMOVAR 6x7, 4, 6, 8, 10, 11, 14, 23, 37, 38 SAMOVAR 6x7 computing, 41 SAMOVAR 6x7 forward modeling, 41 SAMOVAR 6x7 inversion, 41 SAMOVAR computing, 27, 31 SAMOVAR forward modeling, 32 SAMOVAR inversion, 28, 38 Samovar_to_Surfer, 30 scales, 26 Set loops, 9 Signal processing, 20 Sounding configuration, 11 synthetic data set, 28, 33

Т

Tx/Rx loop, 8

W

water column, 23, 25, 38, 39 water flow model, 6, 26, 35, 36, 40